Laboratory Manual to the Course Microprocessors (CENG 329)

EXPERIMENT 5

ÇANKAYA UNIVERSITY

COMPUTER ENGINEERING DEPARTMENT

EXPERIMENT 5

DIGITAL SIGNAL PROCESSOR DATA REPRESENTATION.

FLOATING - POINT ARITHMETIC

OBJECTIVE

Studying the properties of data presentation in floating point format. Analysis and comparing numbers in floating-point and fixed-point formats. Learning the principle of floating point arithmetic applying to processors with different length of registers and ALU. Determining the areas of application to both systems. Experimental analysis of floating-point format using evaluation board Z8 Encore!

1. THEORY

1.1. Floating-point data representation
When deciding on a particular DSP device to use for an application, the choice of either fixed point or floating point will need to be made usually on the basis of the dynamic range demanded by the application and of course cost. Dynamic range is defined as the ratio of the largest and the smallest numbers, which can be represented in the data format. Fixed-point numbers are limited in that they cannot be used to represent a wide range of very large or very small numbers within their fixed word length. In the vast majority of DSP applications, however, fixed-point 16-bit arithmetic gives sufficient dynamic range (96 dB) to accommodate most signals without loss of accuracy. There are some cases, however, such as signal squaring which doubles the dynamic range of the signal to be stored. In these cases a fixed 16-bit representation is inadequate. The problem is not that more bits of resolution are required, but that if large and small numbers have to be repre​sented using a fixed format (i.e. fixed decimal place), then, for the small numbers, most of the significant bits have to be zero to signify the relative difference in size between the two numbers. For example, in the 16-bit format,

23040 = 1011010000000000

3.5625 = 0000000000000011 (=3)
The quantization error, as it is called, in the representation of the smaller number can be overcome by using a numerical representation known as floating point. In this format the radix point can be moved in order to reduce the number of leading zeros and hence making full use of the available bits. While floating-point numbers still use a fixed word length, they are able to represent a much wider range of values. We can say that floating-point numbers have a much greater dynamic range. In fact 32-bit fixed-point notation provides a dynamic range of 192.6 dB whereas 32-bit floating-point notation gives 1529.2 dB.
The 16-bit fixed-point format, which provides a dynamic range of 96 dB, is, as already mentioned, generally good enough for most applications and hence 16-bit devices are very common. For fixed-point processors there is a linear relationship between word size and dynamic range. Each additional bit adds a higher power, base 2, to the achievable dynamic range. This can be calculated using the following relationship:
Dynamic rangefixed point = 20log10(2no. of bits - 1) dB
A general rule of thumb is that each additional bit adds approximately 6 dB to the achiev​able dynamic range. Note that, when using a Qn format, the MSB is a sign bit and does not contribute to the magnitude. For example a Q15 number requires 16 bits to be fully represented but only 15 of the bits are used to hold the magnitude. The achievable dynamic range with Q15 format is therefore approximately 15 (6 = 90 dB.
The resolution, i.e. precision with which numbers can be represented, in fixed-point number formats is also determined by the word length. For example a 16-bit fixed-point processor provides a maximum precision of 16 bits. This is only true if the signal or num​bers being processed are scaled to the full 16-bit boundaries. It may be that a signal only occupies the lower 8 bits, in which case it is said to be scaled to 8 bits and only provides 8 bits of precision, or 8/16 of the maximum precision.
Figure 1(a) shows a sinusoidal signal which has been quantized using an 8-bit con​verter. However, the scaling is such that only the least significant two bits are in use. The resulting quantization error, i.e. difference between the original and quantized signals, is also shown.
Figure 1(b) shows the same signal as Figure 1(a), but this time the signal has been scaled up so that more of the available bits are in use. In this case, the four least significant bits are in use. The corresponding reduction in quantization error is also shown.
[image: image1.png]

Fixed-point processors require the programmer to take into account the magnitude of signals and intermediate results during arithmetic operations and to use appropriate scaling in order to make full use of the representation format. Many simulation pack​ages are available which can help the DSP designer to determine the optimum scaling factors to be used in different applications, the objective always being to maximize pre​cision and dynamic range while minimizing the possibility of overflow errors. The requirement for scaling and the need to account for numerical precision often lead to an increased cost in terms of execution time and program complexity when using fixed-point processors.

Figure 1. Different quantization schemes

In contrast to the fixed-point formats the dynamic range of a floating-point processor increases very much more drastically with increases in word length. Floating-point format is very similar to scientific notation in which a number is represented using a fraction (mantissa) multiplied by an exponent, e.g. of the form:
±m (b(e = floating-point number
where m is the mantissa, b is the radix or base, and e is the exponent of the base. Note that in scientific notation we use an exponent based on powers of 10. However, floating-point numbers are stored using binary so the exponent is based on powers of 2, for example:
0.134 454 3(2-3 = (0.134 454 3)/23 = 0.016 799 926 757 8
Using scientific notation the exponent is used to keep track of the radix or at least to dynamically place the radix point at a convenient location as in the base 10 examples shown below. Floating point hardware must be able to take into account the fact that the sign, exponent, and fraction are all encoded into the same binary word. This means that relatively complex circuitry is required for floating-point arithmetic, which is another reason for the increased cost.
0.002 165 423 66

2.165 423 66 (10-3

2165.423 66 (10-6
The dynamic range of a base 2 floating-point number can be approximated using the relationship given in the following equation. Note that this is an approximation and only holds true when the mantissa is represented using a relatively large number of bits, e.g. greater than 8 bits:
Dynamic rangefloatingpoint = 20log10(22((no. of bits in the exponent)) dB
So for a floating-point number in which 8 bits have been allocated to the exponent, the dynamic range can be estimated as follows:

Floating-point dynamic rangeexponent with 8 bits = 20log10(22((8)) = 1541 dB
As for the fixed-point case there is a rule of thumb which can be used to estimate the dynamic range of a floating-point number as follows:

Floating-point dynamic range (6.02 (2(no. of bits in the exponent)
1.2. The IEEE 754 floating-point standard
While there are several formats for storing and manipulating floating-point numbers the most common is the IEEE 754 standard, which defines the format for single precision 32-bit and double precision 64-bit numbers. The 32-bit single precision is the standard most often used on floating-point DSP devices. However, some do incorporate additional hardware to handle the double precision format. Inside a 32-bit IEEE 754 floating-point processor, 23 bits are assigned to hold the fractional mantissa, 8 bits are used to hold the exponent, and one bit is designated as the sign bit, as shown in Figure 2.
[image: image5.png]Exponent Mantissa

03| F0EsI 2ot “De 0. ol 0|20 1B 1 et 1o b0, 0 0 0470 230 200,01 0. <0 0 -0 0- 0 0 .0

Figure 2. IEEE 754 floating-point format

Unlike fixed-point formats the IEEE 754 floating-point format uses a sign and magnitude representation where the sign bit is explicitly included in the word format: bit 32 is used for this purpose. The mantissa is normalized such that a number of the form l.f is pro​duced, where f is the fractional part occupying the allocated 23 bits. Since the normalized number has a leftmost bit always set to a 1 it is not necessary to store this bit. It is implied in the format and hidden. Thus an n-bit mantissa stores an (n+l)(bit number. In order for the mantissa to be normalized in this way, the exponent is incremented or decremented as appropriate to keep track of the number of left or right shifts required for normalization and hence the radix point.
The exponent field is biased, i.e. offset by a certain value, so that positive and negative exponents can be represented. Using an 8-bit exponent, a range from 0 to 255 can be rep​resented, but with a bias of 127 the exponent values can range from -127 to +127.
[image: image2.png]@ ®)

Two examples given in Figures 3 and 4 show numbers represented in IEEE 754 format. In the first example the sign bit is set to a 1, indicating that it is a negative number. The actual value can be calculated as follows:

Figure 3 Floating-point negative number using IEEE 754 standard

[image: image3.png]0 x 107> 100 200 300 400 500
2 , . . ,
0 me
=2 h L . .
0 100 200 300 400 500

0 100 200 300 400 500

o x10100 200 300 400 500
2 T . : r
ot]
-2 " 1 n "
0 100 200 300 400 500

0 100 200

300

400 500

Figure 4. Floating-point positive number using IEEE 754 standard
Sign bit

 =1, indicating that it is a negative number
Mantissa

 = 1 + 2-1 + 2-3 + 2-5 + 2-6 = 1.6875
Exponent

 = 27 + 26 + 21 = 194
Decimal equivalent

 = -1.6875 (2(194 (127) = (2.490 310 449 95 (1020

For the second example, shown in Figure 3.26(c), the decimal equivalent is as follows:
Sign bit

= 0, hence it is a positive number
Mantissa

= 1 + 2-2 + 2-3 + 2-4 + 2-5 + 2-6 + 2-15 = 1.484 405 517 58
Exponent

= 26 + 25 + 21 = 98
Decimal equivalent

= 1.484 405 517 58 (2(98 (127) = 2.764 920 736 81 (10(9
1.3. Fixed- and floating-point precision
Fixed-point numbers make use of 2" equally spaced values within their representation range, so for example a 16-bit fixed-point format could have 232 equally spaced values from 0 to 4 294 967 295. Floating-point numbers, on the other hand, do not have equal spacing between values in the representation format. For a 32-bit floating-point number the values are in effect spread over a much wider range from very large to very small. For large numbers the spacing between representable values is also large but for small num​bers the spacing is small. Increasing the number of bits used, e.g. to double precision format, will allow the mantissa and/or the exponential terms to grow. However, for a given word length, floating-point resolution is not as good as fixed point because fewer digits are assigned to the mantissa. In practice dynamic range is usually the key requirement, and absolute resolution can be sacrificed for greater dynamic range.
While it is true that floating-point processors provide many features which help the programmer to overcome problems associated with data overflow errors and dynamic range, it should be remembered that the single precision format still uses only 24 bits to hold the mantissa. The effects of quantization may need to be taken into account in some applications such as professional audio. Because the representation formats dis​cussed are only an approximation to a real value there is always the possibility that errors might creep into calculations. An example easily demonstrated on any home computer is an accumulation error, which can cause seemingly simple arithmetic to give unexpected results. An example is given in Figure 5, in which a Simulink model has been set up to repeatedly add the outputs of two random number generators A and B. After the summation has taken place the random numbers A and B are then subtracted from the result. In theory the output of the simulation should give a constant value, zero. However, because intermediate results are inherently rounded off in order to fit inside the binary word width, an error is clearly observed. The output error can be seen in the graphical plots Figure 5 (a) and (b). Depending upon how the errors add together the error signal may be seen to wander around the zero or drift continually in one direction. Both of these cases are shown.

1.4. Floating-point arithmetic
In the vast majority of DSP applications, fixed-point 16-bit arithmetic gives sufficient dynamic range, 96 dB, to accommodate most signals without loss of accuracy. There are some cases, however, such as signal squaring which doubles the dynamic range of the signal to be stored, where a fixed 16-bit representation is inadequate. The problem is not that more bits of resolution are required, but that if

[image: image4.png]Exponent Mantissa

1| B 0 00 70 1 0 R0 0 o 20510 000 000 0% 070" 0= 0" 0" 0 0 S0

Figure 5. Accumulation errors observed using floating-point arithmetic, random

number A (top), random number B (bottom) and observed error (middle)

large and small numbers have to be represented using a fixed format (i.e. fixed decimal place), then, for the small numbers, most of the significant bits have to be zero to signify the relative difference in size between the two numbers.

For example, in Q15 format,
23 040 = 1011010000000000

3.5625 = 0000000000000011 = 3
The quantization error, as it is called, in the representation of the smaller number can be overcome by using a numerical representation known as floating point. The idea of floating-point representation was introduced before and is now summarized and dis​cussed further. As the name suggests, floating-point representation allows the decimal point to be moved, reducing the number of leading zeros. For example, the two numbers shown above can be represented as
23 040 = 1011010000000000 (20
3.5625 = 1110010000000000 (2-n

(n = 14)
Each number, referred to as the mantissa, has associated with it a number of left shifts, referred to as the exponent, in this case 0 and 14, representing the total shift of each number from its original position. Clearly, when a number is stored, the appropriate shift must be stored with it. Rather than use a separate data memory location for this purpose, it is common practice to use only one data word to store both mantissa and exponent. This requires the mantissa to be restricted to, say, the top 12 bits of the data word, with the exponent stored in the lower 4 bits.
A number of DSP devices are specifically designed to handle binary floating-point arithmetic. Other devices, which are primarily designed for fixed-point operation, require algorithms to convert and process fixed-point numbers into floating-point format. The reader is recommended to refer to the operator's manual relating to the device in question to determine the optimum techniques for implementing floating-point arithmetic. However, when working with floating-point arithmetic, the following general rules of multiplication, addition and subtraction apply:
■ To multiply two floating-point numbers, the mantissas are multiplied and the expo​nents added.
■ For floating-point addition or subtraction, the mantissas must first be shifted to give the same exponent value for both numbers. The addition can then take place.

2. PRELIMINARY WORK

2.1. Design and draw flowchart of the algorithm of conversion from (I16.Q16) fixed-point numbers to 24-bits floating-point format for microprocessor Z8 Encore! Structure of format to be use is shown in Figure 6. Determine dynamic range of data representation of given floating-point format.
	27
	26
	25
	24
	23
	22
	21
	20
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16

	Sign
	Exponent
	MSB Mantissa LSB

Figure 6. Floating-point format
2.2. Design a program for the conversion from (I16.Q16) fixed-point numbers to 24-bits floating-point format in ASSEMBLER codes of microprocessor Z8 Encore!, that realize developed algorithms.

3. EXPERIMENTAL WORK

3.1. Following instructions of the manual studied before, execute prepared programs of conversion from (I16.Q16) fixed-point numbers to 24-bits floating-point format:

a). Simulating Z8 Encore! in personal computer.

b). Realizing in development board on Z8 Encore!

4. RESULTS AND CONCLUSIONS

4.1. Explain obtained results, give your explanations of processes during experiments.

5. SELF TEST QUESTIONS

5.1. How is introduced sign of the exponent on floating-point number?
a). By biasing a real value of exponent.

b). By using the MSB of exponential part of the number for sign representation.

c). Sign of exponent is not used in arithmetic operations in floating point format.

5.2. How changes the exponent if mantissa is right-shifted?
a). Exponent increases.

b). Exponent decreases.

5.3. To avoid mantissa overflow executing addition/subtraction operations in floating-point format we correct result:
a). By changing exponent.

b). We shall never reach overflow adding/subtracting numbers in floating-point format.

5.4. What is it considered useful to use a fractional number representation when performing calculations on a fixed-point DSP device?
5.5. If a system uses a 32 bit data format, but can operate in either fixed-point or floating-point modes, determine what the achievable dynamic range will be in each mode of operation. Assume that the floating point format complies with the IEEE 754 standard.
REFERENCES

1. ZiLOG Developer Studio II – Z8 Encore!(, User Manual, UM013026 – 0105

2. Product Specification, High Performance 8-Bit Microcontrollers, Z8 Encore!® 64K Series, PS019908-0404.

3. Andrew Batman, Iain Paterson-Stephens, The DSP Handbook, Pearson Education, 2002, p.665.

4. Sen M. Kuo, Woong-Seng Gan, Digital Signal Processors. Architectures, Implementations and Applications, Pearson Education, 2005, p.602.

